

มาตรฐานผลิตภัณฑ์อุตสาหกรรม

THAI INDUSTRIAL STANDARD

มอก. 2169 เล่ม 3 – 2547

ISO 6507 - 3:1997

ความแข็งวิกเกอรส์สำหรับโลหะ

เล่ม 3 การสอบเทียบแท่งความแข็งอ้างอิง

VICKERS HARDNESS TEST FOR METALLIC MATERIALS

PART 3: CAKUBRATION OF REFERENCE BLOCKS

[ISO TITLE: METALLIC MATERIALS—VICKERS HARDNESS TEST—PART 3: CALIBRATION OF REFERENCE BLOCKS]

สำนักงานมาตรฐานผลิตภัณฑ์อุตสาหกรรม

มาตรฐานผลิตภัณฑ์อุตสาหกรรม ความแข็งวิกเกอรส์สำหรับโลหะ

เล่ม 3 การสอบเทียบแท่งความแข็งอ้างอิง

มอก. 2169 เล่ม 3 – 2547

สำนักงานมาตรฐานผลิตภัณฑ์อุตสาหกรรม กระทรวงอุตสาหกรรม ถนนพระรามที่ 6 กรุงเทพ 10400 โทรศัพท์ 0 2202 3300 มาตรฐานผลิตภัณฑ์อุตสาหกรรม ความแข็งวิกเกอรส์สำหรับโลหะ เล่ม 3 การสอบเทียบแท่งความแข็งอ้างอิง กำหนดขึ้นเพื่อใช้เป็นวิธีสอบเทียบทางตรงแท่งความแข็งอ้างอิงสำหรับความแข็งวิกเกอรส์ที่กำหนดรายละเอียดไว้ใน มอก.2169 เล่ม 2 ทั้งนี้เพื่อให้มีระดับความเชื่อมั่น ความถูกต้องของเครื่องมือทดสอบ โดยรับ ISO 6507-3: 1997 Metallic materials - Vickers hardness test - Part 3 Calibration of reference blocks มาใช้ในระดับเหมือนกัน ทุกประการ (identical) โดยใช้ ISO ฉบับภาษาอังกฤษเป็นหลัก

มาตรฐานผลิตภัณฑ์อุตสาหกรรมนี้กำหนดขึ้นเพื่อใช้ในการอ้างอิง และเพื่อให้ทันกับความต้องการของผู้ใช้มาตรฐาน ซึ่งจะได้แปลเป็นภาษาไทยในโอกาสอันสมควรต่อไป หากมีข้อสงสัยโปรดติดต่อสอบถามที่สำนักงานมาตรฐานผลิตภัณฑ์ อุตสาหกรรม

คณะกรรมการมาตรฐานผลิตภัณฑ์อุตสาหกรรมได้พิจารณามาตรฐานนี้แล้ว เห็นสมควรเสนอรัฐมนตรีประกาศตาม มาตรา 15 แห่งพระราชบัญญัติมาตรฐานผลิตภัณฑ์อุตสาหกรรม พ.ศ. 2511

ประกาศกระทรวงอุตสาหกรรม ฉบับที่ 3353 (พ.ศ. 2548)

ออกตามความในพระราชบัญญัติมาตรฐานผลิตภัณฑ์อุตสาหกรรม

พ.ศ. 2511

เรื่อง กำหนดมาตรฐานผลิตภัณฑ์อุตสาหกรรม ความแข็งวิกเกอรส์สำหรับโลหะ เล่ม 3 การสอบเทียบแท่งความแข็งอ้างอิง

อาศัยอำนาจตามความในมาตรา 15 แห่งพระราชบัญญัติมาตรฐานผลิตภัณฑ์อุตสาหกรรม พ.ศ. 2511 รัฐมนตรีว่าการกระทรวงอุตสาหกรรมออกประกาศกำหนดมาตรฐานผลิตภัณฑ์อุตสาหกรรม ความแข็งวิกเกอรส์ สำหรับโลหะ เล่ม 3 การสอบเทียบแท่งความแข็งอ้างอิง มาตรฐานเลขที่ มอก. 2169 เล่ม 3-2547 ไว้ ดังมีรายการ ละเอียดต่อท้ายประกาศนี้

ประกาศ ณ วันที่ 25 พฤษภาคม พ.ศ. 2548
วัฒนา เมืองสุข
รัฐมนตรีว่าการกระทรวงอุตสาหกรรม

มาตรฐานผลิตภัณฑ์อุตสาหกรรม ความแข็งวิกเกอรส์สำหรับโลหะ

เล่ม 3 การสอบเทียบแท่งความแข็งอ้างอิง

บทน้ำ

มาตรฐานผลิตภัณฑ์อุตสาหกรรมนี้กำหนดขึ้นโดยการรับ ISO 6507-3 : 1997 Metallic materials - Vickers hardness test - Part 3: Calibration of reference blocks มาใช้ในระดับเหมือนกันทุกประการ (identical) โดยใช้ ISO ฉบับภาษาอังกฤษเป็นหลัก

ขอบข่าย

มาตรฐานผลิตภัณฑ์อุตสาหกรรมนี้ กำหนดขึ้นเพื่อใช้เป็นวิธีสอบเทียบทางตรงแท่งความแข็งอ้างอิงสำหรับเครื่อง ทดสอบความแข็งวิกเกอรส์ ที่กำหนดรายละเอียดไว้ใน มอก.6507 เล่ม 2 ที่มีขนาดเส้นทะแยงมุมของรอยกด ไม่น้อยกว่า 0.020 มิลลิเมตร

เอกสารอ้างอิง

ISO 376 - Metallic materials - Calibration of force - proving instruments used for the verification of uniaxial testing machines

ISO 468: 1982 Surface roughness - Parameters, their values and general rules for specifying requirements

ISO 4287: 1997 Geometrical Product Specifications (GPS) - Surface texture: Profile method - Terms, definitions and surface texture parameters

ISO 6507-1:1997 Metallic materials - Vickers hardness test - Part 1: Test method

ISO 6507-2:1997 Metallic materials - Vickers hardness test - Part 2: Verification of testing machines

การทำแท่งสอบเทียบอ้างอิง

รายละเอียดให้เป็นไปตาม ISO 6507-3: 1997 ข้อ 3

เครื่องมือสอบเทียบ

รายละเอียดให้เป็นไปตาม ISO 6507-3: 1997 ข้อ 4

ขั้นตอนการสอบเทียบ

รายละเอียดให้เป็นไปตาม ISO 6507-3: 1997 ข้อ 5

จำนวนรอยกด

รายละเอียดให้เป็นไปตาม ISO 6507-3: 1997 ข้อ 6

ความสม่ำเสมอของความแข็ง

รายละเอียดให้เป็นไปตาม ISO 6507-3: 1997 ข้อ 7

การทำเครื่องหมาย

รายละเอียดให้เป็นไปตาม ISO 6507-3: 1997 ข้อ 8

ความใช้ได้ของแท่งสอบเทียบ

รายละเอียดให้เป็นไปตาม ISO 6507-3: 1997 ข้อ 9

Metallic materials — Vickers hardness test —

Part 3:

Calibration of reference blocks

1 Scope

This part of ISO 6507 specifies a method for the calibration of reference blocks to be used for the indirect verification of Vickers hardness testing machines, as specified in ISO 6507-2.

The method is applicable only for indentations with diagonals $\geq 0,020$ mm.

The force values in this part of ISO 6507 were calculated from kilogram force values. They were introduced before the SI-system was adopted. It was decided to keep the values based on the old units for this edition, but for the next revision it will be necessary to consider the advantage of introducing rounded values of test force and the consequence on the hardness scales.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO 6507. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 6507 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 376:—¹⁾, Metallic materials — Calibration of force-proving instruments used for the verification of uniaxial testing machines.

ISO 468:1982, Surface roughness — Parameters, their values and general rules for specifying requirements.

ISO 4287:1997, Geometrical Product Specifications (GPS) — Surface texture: Profile method — Terms, definitions and surface texture parameters.

ISO 6507-1:1997, Metallic materials — Vickers hardness test — Part 1: Test method.

ISO 6507-2:1997, Metallic materials — Vickers hardness test — Part 2: Verification of testing machines.

¹⁾ To be published. (Revision of ISO 376:1987)

3 Manufacture of reference blocks

- **3.1** The block shall be specially prepared and the attention of the manufacturer is drawn to the need to use a manufacturing process which will give the necessary homogeneity, stability of structure and uniformity of surface hardness.
- 3.2 Each metal block to be calibrated shall be of a thickness not less than 6 mm.
- **3.3** The reference blocks shall be free of magnetism. It is recommended that the manufacturer shall ensure that the blocks, if of steel, have been demagnetized at the end of the manufacturing process.
- **3.4** The maximum deviation in flatness of the test and support surfaces shall not exceed 0,005 mm. The maximum error in parallelism shall not exceed 0,010 mm in 50 mm.
- **3.5** The test surface shall be free from scratches which interfere with the measurement of the indentations. The surface roughness R_a shall not exceed 0,000 05 mm for the test surface and 0,000 8 mm for the bottom surface (see ISO 468). The sampling length I shall be 0,80 mm (see ISO 4287).
- **3.6** In order to check that no material has been subsequently removed from the reference block, its thickness at the time of calibration shall be marked on it to the nearest 0,01 mm, or an identifying mark shall be made on the test surface (see clause 8).

4 Calibrating machine

- **4.1** In addition to fulfilling the general requirements specified in ISO 6507-2, the calibrating machine shall also meet the requirements of 4.2.
- 4.2 The calibrating machine shall be verified directly at intervals not exceeding 12 months.

Direct verification involves

- a) verification of the test force;
- b) verification of the indenter;
- c) verification of the measuring device;
- d) verification of the testing cycle.

The equipment used to verify the calibrating machine shall have a certified traceability to the International System of Units (SI).

- 4.2.1 Each test force shall be accurate to within
- ± 0,1 % for the normal and low-force hardness;
- ± 0.5 % for the microhardness:

of the nominal test force specified in ISO 6507-1.

The force shall be measured with force-proving instruments of class 0,5 according to ISO 376 or by another method having the same accuracy.

- **4.2.2** The four faces of the square-based diamond pyramid shall be highly polished, free from surface defects, and flat within 0,000 3 mm.
- **4.2.3** The angle between the opposite faces of the vertex of the diamond pyramid shall be $136^{\circ} \pm 0.1^{\circ}$.

The angle between the axis of the diamond pyramid and the axis of the indenter-holder (normal to the seating surface) shall be less than 0,3°.

- **4.2.4** The point of the diamond indenter shall be examined with a high-power measuring microscope or preferably with an interference microscope and, if the four faces do not meet in a point, the line of conjunction between opposite faces shall be less than 0,001 mm in length. For microhardness testing, the length shall not exceed 0,000 25 mm.
- **4.2.5** It shall be verified that the quadrilateral which would be formed by the intersection of the faces with a plane perpendicular to the axis of the diamond pyramid has angles of $90^{\circ} \pm 0.2^{\circ}$ (see figure 1).

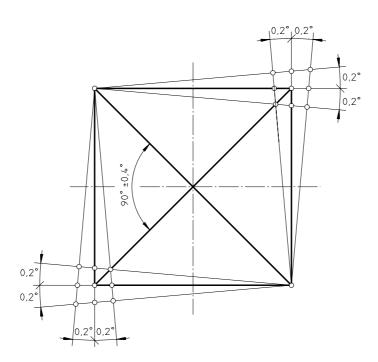


Figure 1 — Permissible difference of the sectional planes of the square form

4.2.6 The estimation capability required of the measuring device depends on the size of the smallest indentation to be measured.

The scale of the measuring device shall be graduated to permit estimation of the diagonals of the indentation in accordance with table 1.

Table 1

Diagonal length d mm	Estimation capability of the measuring device	Maximum permissible error
$d \leq 0.040$ $d > 0.040$	0,000 1 mm 0, 25 % of <i>d</i>	0,000 2 mm 0,5 % of <i>d</i>

4.2.7 The measuring device shall be verified by measurements made on a stage micrometer at a minimum of five intervals over each working range.

The maximum permissible error shall not exceed the values given in table 1.

4.2.8 For microhardness testing, the maximum allowable vibrational acceleration reaching the calibration machine shall be 0,005 $g_{\rm n}$ ($g_{\rm n}$ equals the standard acceleration of free fall: $g_{\rm n} = 9,806$ 65 m/s²).

มอก. 2169 เล่ม 3 – 2547 ISO 6507 – 3 : 1997

4.2.9 The time from the initial application of force until the full test force is reached and the approach velocity of the indenter shall meet the requirements given in table 2.

Table 2

Ranges of test force, F	Time for application of the test force	Approach velocity of the indenter
N	S	mm/s
F < 1,961 $1,961 \le F < 49,03$ $F \ge 49,03$	≤ 10 ≤ 10 6 to 8	0,05 to 0,2 0,05 to 0,2 0,05 to 1

The duration of application of the test force shall be 13 s to 15 s.

5 Calibration procedure

The reference blocks shall be calibrated in a calibrating machine as described in clause 4, at a temperature of (23 ± 5) °C, using the general procedure specified in ISO 6507-1.

6 Number of indentations

On each reference block, five indentations shall be made, uniformly distributed over the test surface.

7 Uniformity of hardness

7.1 Let d_1 , d_2 , ..., d_5 be the arithmetic mean values of the measured diagonals, arranged in increasing order of magnitude.

The uniformity of the block under the particular conditions of calibration is characterized by the difference

$$d_5 - d_1$$

and is expressed as a percentage of \overline{d} , where

$$\overline{d} = \frac{d_1 + d_2 + \dots + d_5}{5}$$

7.2 The maximum permissible value of non-uniformity of a reference block is given in table 3.

Table 3

Hardness of block	Maximum permissible value of non-uniformity $\%$ of \overline{d}		
	< HV 0,2	HV 0,2 to < HV 5	HV 5 to HV 100
≤ 225 HV	4,0 or 0,001 mm ¹⁾	3,0	2,0
> 225 HV		2,0	1,0
1) Whichever is the	greater.		

8 Marking

- **8.1** Each reference block shall be marked with the following particulars:
- a) arithmetic mean of the hardness values found in the calibration test, for example 249 HV 30;
- b) name or mark of the supplier or manufacturer;
- c) serial number;
- d) name or mark of the calibrating agency;
- e) thickness of the block or an identifying mark on the test surface (see 3.6);
- f) year of calibration, if not indicated in the serial number.
- **8.2** Any mark put on the side of the block shall be the right way up when the test surface is the upper face.
- **8.3** Each delivered reference block shall be accompanied with a document giving at least the following information:
- a) the reference to this part of ISO 6507;
- b) the identity of the block;
- c) the date of calibration;
- d) the arithmetic mean of the hardness values and the value characterizing the uniformity of the block.

NOTE — One of the five indentations may be selected as a reference indentation for the indirect verification of the measuring device as described in annex A of ISO 6507-2:1997. Therefore, it should be identified with a permanent mark in line with one of the measured indentation diagonals.

9 Validity

The reference block is only valid for the test force for which it was calibrated and provided that the block fulfils the requirements of clause 3.

NOTE — It is recommended that the duration of the calibration validity should be limited to 5 years.