

มาตรฐานผลิตภัณฑ์อุตสาหกรรม

THAI INDUSTRIAL STANDARD

มอก. 2171 เล่ม 2-2547

ISO 6508 - 2:1999

ความแข็งรอกเวลล์สำหรับโลหะ

เล่ม 2 การทวนสอบและการสอบเทียบเครื่องทดสอบ

(alna A, B, C, D, E, F, G, H, K, N, T)

ROCKWELL HARDNESS TEST FOR METALLIC MATERIALS

PART 2 : VERIFICATION AND CALIBRATION OF TESTING MACHINES (SCALES A, B, C, D, E, F, G, H, K, N, T)]

[ISO TITLE: METALLIC MATERIALS – ROCKWELL HARDNESS TEST – PAST 2: VERIFICATION AND CALIBRATION OF TESTING MACHINES (SCALES A, B, C, D, E, F, G, H, K, N, T)]

สำนักงานมาตรฐานผลิตภัณฑ์อุตสาหกรรม

มาตรฐานผลิตภัณฑ์อุตสาหกรรม ความแข็งรอกเวลล์สำหรับโลหะ

เล่ม 2 การทวนสอบและการสอบเทียบเครื่องทดสอบ (สเกล A, B, C, D, E, F, G, H, K, N, T)

มอก. 2171 เล่ม 2 — 2547

สำนักงานมาตรฐานผลิตภัณฑ์อุตสาหกรรม กระทรวงอุตสาหกรรม ถนนพระรามที่ 6 กรุงเทพ 10400 โทรศัพท์ 0 2202 3300 มาตรฐานผลิตภัณฑ์อุตสาหกรรม ความแข็งรอกเวลล์สำหรับโลหะ เล่ม 2 การทวนสอบและการสอบเทียบเครื่องทดสอบ (สเกล A, B, C, D, E, F, G, H, K, N, T) นี้ กำหนดขึ้นเพื่อใช้เป็นวิธีทวนสอบและสอบเทียบ เครื่องทดสอบความแข็ง รอกเวลล์ เพื่อให้แน่ใจว่าเครื่องทดสอบมีความถูกต้อง ความแม่นยำและค่าความผิดพลาดอยู่ในช่วงที่มาตรฐาน การทดสอบกำหนดโดยรับ ISO 6508-2:1999 Metallic materials—Rockwell hardness test—Part 2: Verification and calibration of testing machines (scales A, B, C, D, E, F, G, H, K, N, T) มาใช้ในระดับเหมือนกันทุกประการ (identical) โดยใช้ ISO ฉบับภาษาอังกฤษเป็นหลัก

มาตรฐานผลิตภัณฑ์อุตสาหกรรมนี้กำหนดขึ้นเพื่อใช้ในการอ้างอิง และเพื่อให้ทันกับความต้องการของผู้ใช้มาตรฐาน ซึ่งจะได้แปลเป็นภาษาไทยในโอกาสอันสมควรต่อไป หากมีข้อสงสัยโปรดติดต่อสอบถามที่สำนักงานมาตรฐานผลิตภัณฑ์ อุตสาหกรรม

คณะกรรมการมาตรฐานผลิตภัณฑ์อุตสาหกรรมได้พิจารณามาตรฐานนี้แล้ว เห็นสมควรเสนอรัฐมนตรีประกาศตาม มาตรา 15 แห่งพระราชบัญญัติมาตรฐานผลิตภัณฑ์อุตสาหกรรม พ.ศ. 2511

ประกาศกระทรวงอุตสาหกรรม ฉบับที่ 3358 (พ.ศ. 2548)

ออกตามความในพระราชบัญญัติมาตรฐานผลิตภัณฑ์อุตสาหกรรม

พ.ศ. 2511

เรื่อง กำหนดมาตรฐานผลิตภัณฑ์อุตสาหกรรม ความแข็งรอกเวลล์สำหรับโลหะ เล่ม 2 การทวนสอบและการสอบเทียบเครื่องทดสอบ

(สเกล A, B, C, D, E, F, G, H, K, N, T)

อาศัยอำนาจตามความในมาตรา 15 แห่งพระราชบัญญัติมาตรฐานผลิตภัณฑ์อุตสาหกรรม พ.ศ. 2511 รัฐมนตรีว่าการกระทรวงอุตสาหกรรมออกประกาศกำหนดมาตรฐานผลิตภัณฑ์อุตสาหกรรม ความแข็งรอกเวลล์ สำหรับโลหะ เล่ม 2 การทวนสอบและการสอบเทียบเครื่องทดสอบ (สเกล A, B, C, D, E, F, G, H, K, N, T) มาตรฐานเลขที่ มอก. 2171 เล่ม 2-2547 ไว้ ดังมีรายการละเอียดต่อท้ายประกาศนี้

ประกาศ ณ วันที่ 26 พฤษภาคม พ.ศ. 2548 วัฒนา เมืองสุข

รัฐมนตรีว่าการกระทรวงอุตสาหกรรม

มาตรฐานผลิตภัณฑ์อุตสาหกรรม ความแข็งรอกเวลล์สำหรับโลหะ

เล่ม 2 การทวนสอบและการสอบเทียบเครื่องทดสอบ

(atna A, B, C, D, E, F, G, H, K, N, T)

บทน้ำ

มาตรฐานผลิตภัณฑ์อุตสาหกรรมนี้กำหนดขึ้นโดยการรับ ISO 6508-2: 1999 Metallic materials - Rocwell hardness test - Past 2: Verification and calibration of testing machines (scales A, B, C, D, E, F, G, H, K, N, T) มาใช้ในระดับเหมือนกันทุกประการ (identical) โดยใช้ ISO ฉบับภาษาอังกฤษเป็นหลัก

ขอบข่าย

มาตรฐานผลิตภัณฑ์อุตสาหกรรมนี้ กำหนดวิธีทวนสอบและสอบเทียบเครื่องทดสอบความแข็งรอกเวลล์ตาม มอก.2171 เล่ม 1 สเกล A, B, C, D, E, F, G, H, K, N, T โดยกำหนดการทวนสอบทางตรงเพื่อตรวจสอบกลไก การทำงานหลักของเครื่อง ส่วนการทวนสอบทางอ้อมนอกจากการใช้เพื่อตรวจสอบสถานะโดยรวมของเครื่องทดสอบ แล้วยังอาจใช้เป็นการตรวจสอบที่ปฏิบัติเป็นประจำในการตรวจสอบเครื่องทดสอบ

ถ้าเครื่องทดสอบใช้สำหรับการทดสอบความแข็งโดยวิธีอื่นการทวนสอบและการสอบเทียบขึ้นอยู่กับวิธีการทดสอบนั้น วิธีทวนสอบและสอบเทียบนี้สามารถใช้ได้กับเครื่องทดสอบแบบเคลื่อนที่ และทวนสอบทางตรงเครื่องทดสอบภายหลัง การติดตั้งหรือการถอดและประกอบเครื่องใหม่ โดยไม่ครอบคลุมถึงการย้ายตำแหน่งเครื่องทดสอบ

เอกสารอ้างอิง

ISO 376 Metallic materials – Calibration of force – proving instruments used for the verification of uniaxial testing machines

ISO 3878 Hardmetals - Vickers hardness test

ISO 6507-1:1997 Metallic materials - Vickers hardness test - Part 1: Test method

ISO 6508-1 Metallic materials - Rockwell hardness test - Part 1 : Test method (scales A, B, C, D, E, F, G, H, K, N, T)

ISO 6508-3 Metallic materials - Rockwell hardness test - Part 3 : Calibration of reference blocks (scales A, B, C, D, E, F, G, H, K, N, T)

เงื่อนไขทั่วไป

รายละเอียดให้เป็นไปตาม ISO 6508-2: 1999 ข้อ 3

การทวนสอบทางตรง

รายละเอียดให้เป็นไปตาม ISO 6508-2: 1999 ข้อ 4

การทวนสอบทางตรงอ้อม

รายละเอียดให้เป็นไปตาม ISO 6508-2: 1999 ข้อ 5

ช่วงระยะเวลาการทวนสอบ

รายละเอียดให้เป็นไปตาม ISO 6508-2: 1999 ข้อ 6

รายงานการทวนสอบ/สอบเทียบ

รายละเอียดให้เป็นไปตาม ISO 6508-2: 1999 ข้อ 7

Metallic materials — Rockwell hardness test —

Part 2:

Verification and calibration of testing machines (scales A, B, C, D, E, F, G, H, K, N, T)

1 Scope

This part of ISO 6508 specifies a method of verification of testing machines for determining Rockwell hardness (scales A, B, C, D, E, F, G, H, K, N, T).

It specifies a direct method for checking the main functions of the machine and an indirect method suitable for the overall checking of the machine. The indirect method may be used on its own for periodic routine checking of the machine in service.

If a testing machine is also to be used for other methods of hardness testing, it shall be verified independently for each method.

This part of ISO 6508 is applicable to portable hardness testing machines with the exception of requirements in 6.1 a) in which the word "relocation" does not apply.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this part of ISO 6508. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this part of ISO 6508 are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

ISO 376, Metallic materials — Calibration of force-proving instruments used for verification of uniaxial testing machines.

ISO 3878, Hardmetals — Vickers hardness test.

ISO 6507-1:1997, Metallic materials — Vickers hardness test — Part 1: Test method.

ISO 6508-1, Metallic materials — Rockwell hardness test — Part 1: Test method (scales A, B, C, D, E, F, G, H, K, N, T).

ISO 6508-3, Metallic materials — Rockwell hardness test — Part 3: Calibration of reference blocks (scales A, B, C, D, E, F, G, H, K, N, T).

3 General conditions

Before a Rockwell hardness testing machine is verified, the machine shall be checked to ensure the following:

- a) the machine is properly set up;
- b) the plunger holding the indenter is capable of sliding in its guide;
- c) the indenter-holder is firmly mounted in the plunger;
- d) the test force can be applied and removed without shock or vibration and in such a manner that the readings are not influenced:
- e) the readings are not affected either by movements of the test piece or by deformation of the frame. When a device is supplied, which locks the test piece against the upper part of the frame, the locking force shall exceed the total test force. The influence of deformations may be checked by using a plunger with a spherical tip (diameter of at least 10 mm), instead of the indenter, bearing against the anvil through a spacer and using the locking device when it is supplied. The material of the plunger and of the spacer shall have a hardness of at least 60 HRC. The readings of the measuring device (with preliminary force applied) before application and after removal of the additional force shall not differ by more than 1,5 Rockwell units (without locking equipment) and 0,5 Rockwell unit (with locking equipment).

4 Direct verification

4.1 General

- **4.1.1** Direct verification should be carried out at a temperature of (23 ± 5) °C. If the verification is made outside of this temperature range, this shall be reported in the verification report.
- **4.1.2** The instruments used for verification and calibration shall be traceable to the national standards.
- 4.1.3 Direct verification involves:
- a) calibration of the test force;
- b) verification of the indenter;
- c) calibration of the depth-measuring device;
- d) verification of the testing cycle.

4.2 Calibration of the test force

- **4.2.1** The preliminary test force F_0 (see 4.2.4) and each total test force F used (see 4.2.5) shall be measured, and, whenever applicable, this shall be done at no less than three positions of the plunger spaced throughout its range of movement during testing. The preliminary test force shall be held for at least 2 s.
- **4.2.2** The forces shall be measured by one of the following two methods:
- measuring with a force-proving device of class 1 in accordance with ISO 376 or,
- balancing against a force, accurate to \pm 0,2 %, applied using calibrated masses by mechanical means.
- **4.2.3** Three readings shall be taken for each force at each position of the plunger. Immediately before each reading is taken, the plunger shall be moved in the same direction as during testing.
- **4.2.4** The tolerance on the preliminary test force F_0 (before application and after removal of the additional test force F_1) shall be ± 2.0 %.

4.2.5 The tolerance on the total test force F shall be $\pm 1,0$ %. Each individual value of F shall be within this tolerance.

4.3 Verification of the indenters

4.3.1 Diamond cone indenter (scales A, C, D, N)

To verify the reliable performance of the conical indenter in conformance with this part of ISO 6508 a direct and an indirect verification shall be carried out.

4.3.1.1 Direct verification

- **4.3.1.1.1** The surfaces of the diamond cone and spherical tip shall be polished for a penetration depth of 0,3 mm and shall blend in a truly tangential manner. Both surfaces shall be free from surface defects.
- **4.3.1.1.2** The verification of the shape of the indenter can be made by direct measurement or by measurement of its projection on a screen. The verification shall be made at no less than four equally spaced sections.
- **4.3.1.1.3** The diamond cone shall have an included angle of $(120 \pm 0.35)^{\circ}$.

Deviations from the straightness of the generatrix of the diamond cone, adjacent to the blend, shall not exceed 0.002 mm over a minimum length of 0.4 mm.

- **4.3.1.1.4** The angle between the axis of the diamond cone and the axis of the indenter-holder (normal to the seating surface) shall not exceed 0.5° .
- **4.3.1.1.5** The tip of the indenter shall be spherical. Its radius shall be determined from single values, measured in the axial section planes defined in 4.3.1.1.2. The distance between the concentric circles shall be no more than 0,004 mm. Each single value shall be within $(0,2\pm0,015)$ mm. The mean value out of at least four single values shall be within $(0,2\pm0,01)$ mm.
- NOTE 1 The radius can be obtained by determining the intersection of two segments of the concentric circles.
- NOTE 2 The single value is the mean value of the two radii of the concentric circles.

4.3.1.2 Indirect verification

NOTE The hardness values given by the testing machine depend not only on the dimensions given in 4.3.1.1.3 and 4.3.1.1.5, but also on the surface roughness and the position of the crystallographic axes of the diamond, and the seating of the diamond in its holder.

To examine this influence, the indirect verification of the indenter shall be performed on four reference blocks which shall be calibrated for the hardness levels given in Table 1 or on blocks giving equivalent total depths of indentation.

Scale	Hardness	Tolerances
HRC	23	
HRC	55	± 3
HR45N	43	
HR15N	91	

Table 1 — Hardness levels for different scales

For each block the mean hardness value of three indentations made using the indenter to be verified shall not differ from the mean hardness value of the three indentations obtained with the reference indenter by more than \pm 0,8 Rockwell unit. The indentations made with the indenter to be verified and with that of the reference indenter should be adjacent.

มอก. 2171 เล่ม 2 – 2547

ISO 6508-2:1999

The hardness testing machines used for this indirect verification shall comply with the following tolerances for the test forces:

 F_0 : ± 1,0 %

 $F: \pm 0.5 \%$

The test shall be performed in accordance with ISO 6508-1.

4.3.2 Ball indenters (scales B, E, F, G, H, K, T) (steel or hardmetal)

- **4.3.2.1** For the purpose of verifying the size and the hardness of the balls, one sample selected at random from a batch shall be tested. The ball(s) verified for hardness shall be discarded.
- **4.3.2.2** The balls shall be polished and free from surface defects.
- **4.3.2.3** The user shall either measure the balls to ensure that they meet the following requirements, or shall obtain balls from a supplier certifying that the following conditions are met.
- **4.3.2.3.1** The diameter, measured at no less than three positions, shall not differ from the nominal diameter by more than the tolerance given in Table 2.

Table 2 — Tolerances for the different ball diameters

Dimensions in millimetres

Rockwell hardness scale	Ball diameter	Tolerance
В	1,5875	± 0,003 5
F	1,5875	± 0,003 5
G	1,5875	± 0,003 5
Т	1,5875	± 0,003 5
E	3,175	± 0,004
Н	3,175	± 0,004
К	3,175	± 0,004

- **4.3.2.3.2** The hardness of steel ball shall be no less than 750 HV 10, when determined in accordance with ISO 6507-1, and applying the appropriate correction for curvature as given in annex B of ISO 6507-1:1997 (see Table 3).
- **4.3.2.3.3** The characteristics of the hardmetal balls shall be as follows:
- hardness: the hardness shall be no less than 1500 HV 10, when determined in accordance with ISO 3878 (see Table 3);
- density: $\rho = (14.8 \pm 0.2) \text{ g/cm}^3$.

NOTE The following chemical composition is recommended:

tungsten carbide (WC) balance total other carbides 2,0 %

cobalt (Co) 5,0 % to 7,0 %

Table 3 — Values of mean diagonal (HV) for the determination of the hardness of ball indenters

Dimensions in millimetres

Ball diameter	Maximum value of mean diagonal made on the ball with a Vickers indenter at 98,07 N (HV 10)	
	Steel ball	Hardmetal ball
3,175	0,153	0,109
1,587 5	0,150	0,107

4.4 Calibration of the depth-measuring device

- **4.4.1** The depth-measuring device shall be calibrated over no less than three intervals, including the intervals corresponding to the lowest and highest hardness for which the scales are normally used, by making known incremental movements of the indenter in the direction of increasing hardness values.
- **4.4.2** The instrument used to verify the depth-measuring device shall have an accuracy of 0,0002 mm. The depth-measuring device shall correctly indicate within $\pm 0,001$ mm for scales A to K and within $\pm 0,0005$ mm for scales N and T, i. e. within $\pm 0,5$ of a scale unit, over each range.
- **4.4.3** If it is not possible to verify directly the depth-measuring device, a modified indirect verification can be made by the hardness test with reference blocks and with a reference indenter (see 5.2).

4.5 Verification of the testing cycle

The testing cycle shall conform to the testing cycle given in ISO 6508-1 and shall be timed with an uncertainty less than \pm 0.5 s.

5 Indirect verification

5.1 General

Indirect verification shall be carried out at a temperature of (23 ± 5) °C by means of reference blocks calibrated in accordance with ISO 6508-3. If the verification is made outside of this temperature range, this shall be reported in the verification report.

5.2 Procedure

5.2.1 For the indirect verification of a testing machine, the following procedures shall be applied.

The testing machine shall be verified for each scale for which it shall be used. For each scale to be verified, reference blocks from the three hardness ranges given in Table 4 shall be used. The hardness values of the blocks shall be chosen to approximate the limits of the intended use.

- **5.2.2** For purposes of routine checking, a hardness testing machine may be checked at one hardness value only, corresponding approximately to that of the tests to be made.
- **5.2.3** On each reference block, five indentations shall be uniformly distributed over the test surface and each hardness number observed to within 0,2 of a scale unit. Before making these indentations, at least two preliminary indentations shall be made to ensure that the machine is working freely and that the reference block, the indenter and the anvil are seated correctly. The results of these preliminary indentations shall be ignored. The test shall be made in accordance with ISO 6508-1.

Table 4 — Hardness ranges for different scales

Rockwell hardness scale	Hardness range of reference block	Rockwell hardness scale	Hardness range of reference block
А	20 HRA to 40 HRA 45 HRA to 75 HRA 80 HRA to 88 HRA	К	40 HRK to 60 HRK 65 HRK to 80 HRK 85 HRK to 100 HRK
В	20 HRB to 50 HRB 60 HRB to 80 HRB 85 HRB to 100 HRB	15N	70 HR15N to 77 HR15N 78 HR15N to 88 HR15N 89 HR15N to 91 HR15N
С	20 HRC to 30 HRC 35 HRC to 55 HRC 60 HRC to 70 HRC	30N	42 HR30N to 54 HR30N 55 HR30N to 73 HR30N 74 HR30N to 80 HR30N
D	40 HRD to 47 HRD 55 HRD to 63 HRD 70 HRD to 77 HRD	45N	20 HR45N to 31 HR45N 32 HR45N to 61 HR45N 63 HR45N to 70 HR45N
Е	70 HRE to 77 HRE 84 HRE to 90 HRE 93 HRE to 100 HRE	15T	73 HR15T to 80 HR15T 81 HR15T to 87 HR15T 88 HR15T to 93 HR15T
F	60 HRF to 75 HRF 80 HRF to 90 HRF 94 HRF to 100 HRF	30Т	43 HR30T to 56 HR30T 57 HR30T to 69 HR30T 70 HR30T to 82 HR30T
G	30 HRG to 50 HRG 55 HRG to 75 HRG 80 HRG to 94 HRG	45T	12 HR45T to 33 HR45T 34 HR45T to 54 HR45T 55 HR45T to 72 HR45T
Н	80 HRH to 94 HRH 96 HRH to 100 HRH	_	_

5.3 Repeatability

5.3.1 For each reference block, let H_1 , H_2 , H_3 , H_4 , H_5 be the values of the measured hardness arranged in increasing order of magnitude.

The repeatability of the testing machine under the particular verification conditions is determined by the following quantity:

$$H_5 - H_1$$

The mean hardness value of the five indentations \overline{H} is defined as follows:

$$\overline{H} = \frac{H_1 + H_2 + H_3 + H_4 + H_5}{5}$$

where H_1 , H_2 , H_3 , H_4 , H_5 are the hardness values corresponding to the five indentations.

5.3.2 The repeatability of the testing machine being verified shall be considered satisfactory if it satisfies the conditions given in Table 5. Permissible repeatability is presented graphically in Figures A.1 and A.2.

Table 5 — Permissible repeatability and error of the testing machine

Rockwell hardness scale	Hardness range of the reference block	Permissible error Rockwell units	Permissible repeatability of the testing machine ^a
А	20 HRA to ≤ 75 HRA > 75 HRA to ≤ 88 HRA	±2 HRA ±1,5 HRA	\leq 0,02 (100 – \overline{H}) or 0,8 Rockwell unit ^b
В	20 HRB to ≤ 45 HRB > 45 HRB to ≤ 80 HRB > 80 HRB to ≤ 100 HRB	±4 HRB ±3 HRB ±2 HRB	\leq 0,04 (130 – \overline{H}) or 1,2 Rockwell units ^b
С	20 HRC to ≤ 70 HRC	±1,5 HRC	\leq 0,02 (100 $-\overline{H}$) or 0,8 Rockwell unit ^b
D	40 HRD to ≤ 70 HRD > 70 HRD to ≤ 77 HRD	±2 HRD ±1,5 HRD	\leq 0,02 (100 – \overline{H}) or 0,8 Rockwell units ^b
E	70 HRE to ≤ 90 HRE > 90 HRE to ≤ 100 HRE	±2,5 HRE ±2 HRE	\leq 0,04 (130 – \overline{H}) or 1,2 Rockwell units ^b
F	60 HRF to ≤ 90 HRF > 90 HRF to ≤ 100 HRF	±3 HRF ±2 HRF	\leq 0,04 (130 – \overline{H}) or 1,2 Rockwell units ^b
G	30 HRG to ≤ 50 HRG > 50 HRG to ≤ 75 HRG > 75 HRG to ≤ 94 HRG	±6 HRG ±4,5 HRG ±3 HRG	\leq 0,04 (130 $-\overline{H}$) or 1,2 Rockwell units ^b
Н	80 HRH to ≤ 100 HRH	±2 HRH	\leq 0,04 (130 – \overline{H}) or 1,2 Rockwell units ^b
К	40 HRK to ≤ 60 HRK > 60 HRK to ≤ 80 HRK > 80 HRK to ≤ 100 HRK	±4 HRK ±3 HRK ±2 HRK	\leq 0,04 (130 – \overline{H}) or 1,2 Rockwell units ^b
N		±2 HRN	\leq 0,04 (100 – \overline{H}) or 1,2 Rockwell units ^b
Т		±3 HRT	\leq 0,06 (100 $-\overline{H}$) or 2,4 Rockwell units ^b

a where \overline{H} is the mean hardness value.

5.4 Error

5.4.1 The error of the testing machine under verification conditions is expressed by the following quantity:

$$\overline{H} - H$$

where

 \overline{H} is the mean hardness value;

 ${\it H}$ is the specified hardness of the reference block used.

5.4.2 The error of the testing machine shall not exceed the values given in Table 5.

b whichever is greater.

6 Intervals between verifications

6.1 Direct verification

The direct verification shall be carried out:

- a) when the machine is installed or after having been dismantled and reassembled or after relocation;
- b) when the result of the indirect verification is not satisfactory;
- c) when indirect verification has not been made for a period greater than 12 months.

Each direct verification shall be followed by an indirect verification.

6.2 Indirect verification

The period between two indirect verifications depends on the maintenance standard and number of times the machine is used. In any case this period shall not exceed 12 months.

7 Verification report/calibration certificate

The verification report/calibration certificate shall include the following information:

- a) a reference to this International Standard, i.e. ISO 6508-2;
- b) the method of verification (direct and/or indirect);
- c) the identification data for the hardness testing machine;
- d) the means of verification (reference blocks, elastic proving devices, etc.);
- e) the Rockwell hardness scale(s) verified;
- f) the verification temperature;
- g) the result obtained;
- h) the date of verification and reference to the verification institution.

Annex A

(normative)

Repeatability of testing machines

Permissible repeatability for testing machines is presented graphically in Figures A.1 and A.2.

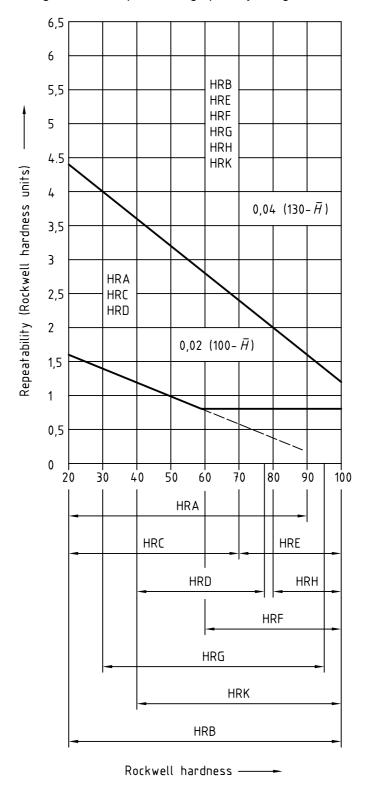


Figure A.1 — Rockwell hardness (scales A, B, C, D, E, F, G, H and K)

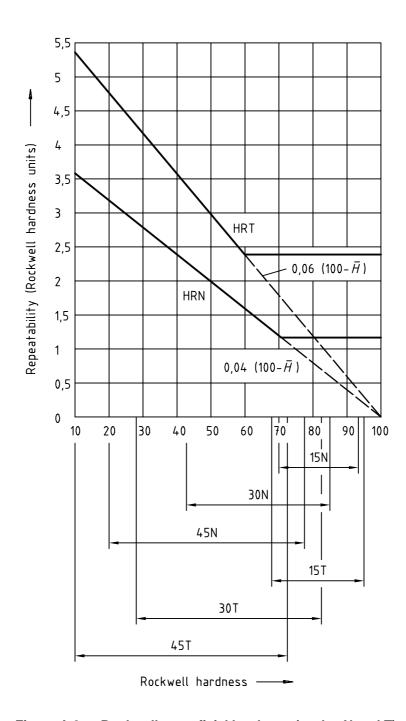


Figure A.2 — Rockwell superficial hardness (scales N and T)